Self-Trapped Nanoparticle Binding via Waveguide Mode
نویسندگان
چکیده
منابع مشابه
Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle.
We study the dynamics of a laser-trapped nanoparticle in high vacuum. Using parametric coupling to an external excitation source, the linewidth of the nanoparticle's oscillation can be reduced by three orders of magnitude. We show that the oscillation of the nanoparticle and the excitation source are synchronized, exhibiting a well-defined phase relationship. Furthermore, the external source ca...
متن کاملWaveguide-Mode Sensors as Aptasensors
Aptamers are artificial nucleic acid ligands that can be generated by in vitro selection through partition and amplification. Aptamers can be generated against a wide range of biomolecules through the formation of versatile stem-loop structures. Because aptamers are potential substitutes for antibodies and drugs, the development of an aptamer-based sensor (aptasensor) is mandatory for diagnosis...
متن کاملNanoparticle amplification via photothermal unveiling of cryptic collagen binding sites
The success of nanoparticle-based cancer therapies ultimately depends on their ability to selectively and efficiently accumulate in regions of disease. Outfitting nanoparticles to actively target tumor-specific markers has improved specificity, yet it remains a challenge to amass adequate therapy in a selective manner. To help address this challenge, we have developed a mechanism of nanoparticl...
متن کاملSelf-accelerating self-trapped optical beams.
We present self-accelerating self-trapped beams in nonlinear optical media, exhibiting self-focusing and self-defocusing Kerr and saturable nonlinearities, as well as a quadratic response. In Kerr and saturable media such beams are stable under self-defocusing and weak self-focusing, whereas for strong self-focusing the beams off-shoot solitons while their main lobe continues to accelerate. Sel...
متن کاملSuperradiance for Atoms Trapped along a Photonic Crystal Waveguide.
We report observations of superradiance for atoms trapped in the near field of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge near the D(1) transition of atomic cesium, strong interaction is achieved between trapped atoms and guided-mode photons. Following short-pulse excitation, we record the decay of guided-mode emission and find a superradiant emission rate scali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Photonics
سال: 2019
ISSN: 2330-4022,2330-4022
DOI: 10.1021/acsphotonics.9b01157